# Cordial Labeling Of One Point Union Of Double -Tail ( $\mathrm{C}_{3}, \mathrm{tP}_{2}$ ) Garphs and their invariance 

Mukund V.Bapat ${ }^{1}$

1. Abstract: We discuss graphs of type $\mathrm{G}^{(\mathrm{k})}$ i.e. one point union of k -copies of G for cordial labeling. We take G as double-tail graph. A double-tail graph is obtained by attaching a path $\mathrm{P}_{\mathrm{m}}$ to a pair of adjacent vertices of given graph. It is denoted by double-tail $\left(G, P_{m}\right)$ where $G$ is given graph. We take $G$ as $C_{3}$ and restrict our attention to $m=3$ in $P_{m}$ and consider upto $t$ paths $P_{3}$ each attached at a pair of adjacent vertices. Further we consider all possible structures of $\mathrm{G}^{(k)}$ by changing the common point in one point union and obtain non-isomorphic structures. We show all these structures as cordial graphs. This is called as invariance of different structures of $\mathrm{G}^{(k)}$ under cordial labeling.

Key words: cordial, one point union, double-tail graph, tail graph, cycle, labeling,
Subject Classification: 05C78

## 2. Introduction

The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Holton [5] Graph Theory by Harary [6], A dynamic survey of graph labeling by J.Gallian [8] and Douglas West.[9].I.Cahit introduced the concept of cordial labeling[5]. f:V $(\mathrm{G}) \rightarrow\{0,1\}$ be a function. From this label of any edge (uv) is given by $|f(u)-f(v)|$. Further number of vertices labeled with 0 i.e $v_{f}(0)$ and the number of vertices labeled with 1 i.e. $\mathrm{v}_{\mathrm{f}}(1)$ differ at most by one . Similarly number of edges labeled with 0 i.e.e $e_{f}(0)$ and number of edges labeled with 1 i.e. $\mathrm{e}_{\mathrm{f}}(1)$ differ by at most one. Then the function f is called as cordial labeling. Cahit has shown that : every tree is cordial; Kn is cordial if and only if $\mathrm{n} \leq 3 ; \mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is cordial for all m and n ; the friendship graph $\mathrm{C}_{3}{ }^{(t)}$ (i.e., the one-point union of t copies of $C_{3}$ ) is cordial if and only if $t$ is not congruent to $2(\bmod 4)$; all fans are cordial; the wheel $W_{n}$ is cordial if and only if $n$ is not congruent to $3(\bmod 4)$. A lot of work has been done in this type of labeling. One may refer dynamic survey by J. Gallian [8].

Our focus of attention is on one point unions on different graphs. For a given graph there are different one point unions (upto isomorphism) structures possible. It depends on which point on G is used to fuse to obtain one point union. We have shown that for $\mathrm{G}=$ bull on $\mathrm{C}_{3}$, bull on $\mathrm{C}_{4}, \mathrm{C}_{3}{ }^{+}, \mathrm{C}_{4}{ }^{+}$e the different path union $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$ are cordial [3].It is called as invariance under cordial labeling. We use the convention that $\mathrm{v}_{\mathrm{f}}(0,1)=(\mathrm{a}, \mathrm{b})$ to indicate the number of vertices labeled with 0 are a in number and that number of vertices labeled with 1 are $b$. Further $e_{f}(0,1)=(x, y)$ we mean the number of edges labeled with $o$ are $x$ and number of edges labeled with 1 are. The graph whose cordial labeling is available is called as cordial graph. In this paper we define double-tail graph and obtain one point union graphs on it. Let G be $a(p, q)$ graph.To one of it's pair of adjacent vertices we fuse $t$ number of paths $P_{m}$. We denote this by double -tail(G,tPm).We choose $\mathrm{m}=2$ and $\mathrm{t}=1,2,3,4$.and discuss their one point union graph at different vertices of G and it's invariance under cordial labeling.

## 3. Preliminaries

3.1 Tail Graph: A ( $\mathrm{p}, \mathrm{q}$ ) graph $G$ to which a path $\mathrm{P}_{\mathrm{m}}$ is fused at some vertex. This also can be explained as take a copy of graph $G$ and at any vertex of it fuse a path $\mathrm{P}_{\mathrm{m}}$ with it's one of the pendent vertex. It's number of vertices are $\mathrm{P}+\mathrm{m}-1$ and edges are by $\mathrm{q}+\mathrm{m}-1$. It is denoted by tail $\left(\mathrm{G}, \mathrm{P}_{\mathrm{m}}\right)$. In this paper we fix G as $\mathrm{C}_{3}$ and take $\mathrm{P}_{\mathrm{m}}$ for $\mathrm{m}=2,3,4,5$.
3.2 Double tail graph : To any graph $G$ we attach paths of equal length to adjacent pair of vertices .When
these paths are gust an edge each then it is referred as bull graph.This graph is denoted by doubletail $(\mathrm{G}, \mathrm{Pm})$ when both tails are identical and equal to $\quad p_{m}$.if tails are $p_{m}$ and $p_{n}$ then the graph is denoted by double-tail $\left(\mathrm{G}, \mathrm{p}_{\mathrm{n}}, \mathrm{p}_{\mathrm{m}}\right)$.It has $\mathrm{p}+\mathrm{m}+\mathrm{n}-2$ vertices and $\mathrm{q}+\mathrm{m}+\mathrm{n}-1$ edges where G is $(\mathrm{p}, \mathrm{q})$ graph. 3.3 Fusion of vertices. Let $u \neq v$ be any two vertices of $G$. We replace these two vertices by a single vertex say x and all edges incident to u and v are now incident to x . If loop is formed then it is deleted.[6]
$3.4 \quad G^{(K)}$ it is One point union of $k$ copies of $G$ is obtained by taking $k$ copies of $G$ and fusing a fixed vertex of each copy with same fixed vertex of other copies to create a single vertex common to all copies. If G is a (p, q) graph then $\mid \mathrm{V}\left(\mathrm{G}_{(\mathrm{k})} \mid=\mathrm{k}(\mathrm{p}-1)+1\right.$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{k} . \mathrm{q}$

## 4. Results Proved:

Theorem 4.1 All non- isomorphic one point union on k-copies of graph obtained on $\mathrm{G}=$ doubletail $\left(\mathrm{C}_{3}, \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs for all k .
Proof: From figure 4.1 it follows that there are three different structures on one point union of k copies of G are possible depending on if we use vertex $\mathrm{a}, \mathrm{b}$, or c as common point.


Fig. 4.1 One point union may be taken at vertex a, or bor c


Fig. $4.2 \mathrm{v}_{\mathrm{f}}(0,1)=$ $(3,2) \mathrm{e}_{\mathrm{f}}(0,1)=(3,2)$


Fig. $4.3 \mathrm{v}_{\mathrm{f}}(0,1)=$ $(3,2) \quad \mathrm{e}_{\mathrm{f}}(0,1)=(2,3)$

Type C
Fig. $4.4 \mathrm{v}_{\mathrm{f}}(0,1)=$ $(7,6) \quad e_{f}(0,1)=(7,8)$


To take one point union at vertex a or b the type A or Type B label is used alternately. In $\mathrm{G}^{(\mathrm{k})}$ where $\mathrm{k}=$ $2 x$ the type A label and type b label each is used for $x$ times. If $k=2 x+1(x=0,1,2, .$.$) then type A$ label is used for $\mathrm{x}+1$ times and type B label is used for x times. The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=$ $(3+4 x, 2+4 x) e_{f}(0,1)=(3+5 x, 2+5 x)$ for $k=2 x+1, x=0,1,2, \ldots$ If $k=2 x, x=1,2,3, .$. then $v_{f}(0,1)=(5+4(x-$ $1), 4+4(x-1)) e_{f}(0,1)=(5 x, 5 x)$. When one point union is taken at point $c$ then the graph $G^{(k)}$ has no cordial labeling when $\mathrm{k} \equiv 2(\bmod 4)$.
For all other values of $k$ we proceed as follows.
Case $\mathrm{k}=4 \mathrm{x}$. We use type D label repeatedly. The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(1+8 \mathrm{x}, 8 \mathrm{x})$ $e_{f}(0,1)=(10 x, 10 x)$.

Case $\mathrm{k}=4 \mathrm{x}+1$.
We first obtain labeling for $\mathrm{k}=4 \mathrm{x}$ as shown above. With this labeled copy we fuse type A label at vertex c. The label number distribution is $v_{f}(0,1)=(3+8 x, 2+8 x) e_{f}(0,1)=(3+10 x, 2+10 x)$.

Case $k=4 x+3$. We first obtain labeling for $k=4 x$ as shown above. With this labeled copy we fuse type $C$ label at vertex $c$. The label number distribution is $v_{f}(0,1)=(7+8 x, 6+8 x) e_{f}(0,1)=(7+10 x, 8+10 x)$.
Thus the graph is cordial.
\#
Theorem 4.2 All non- isomorphic one point union on k-copies of graph obtained on $\mathrm{G}=$ double tail $\left(\mathrm{C}_{3}, 2 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.
Proof: From Fig 4.6 it follows that we can take one point union at four vertices ' $a$ ', ' $b$ ', ' $c$ '. For the one point union at any of these vertices we fuse the type A and Type B label at respective vertex. In $G^{(k)}$ where $k=2 x$ the type $A$ label and type $B$ label each is used for $x$ times. If $k=2 x+1(x=0,1,2, .$.$) then$ type A label is used for $\mathrm{x}+1$ times and type B label is used for x times.


Fig. 4.6 One point union may be taken at vertex a, or bor c.


Fig. $4.7 \mathrm{v}_{\mathrm{f}}(0,1)=$ $(3,2) \quad \mathrm{e}_{\mathrm{f}}(0,1)=(3,2)$

The label number distribution is $v_{f}(0,1)=(3+6 x, 4+6 x) e_{f}(0,1)=(3+7 x, 4+7 x)$ for $k=2 x+1, x=0,1,2, \ldots$ If $\mathrm{k}=2 \mathrm{x}, \mathrm{x}=1,2,3$, ..then $\mathrm{v}_{\mathrm{f}}(0,1)=(6+6(\mathrm{x}-1), 7+6(\mathrm{x}-1)) \mathrm{e}_{\mathrm{f}}(0,1)=(7 \mathrm{x}, 7 \mathrm{x})$. Thus the graph is product cordial even if we change the common point in $\mathrm{G}^{(\mathrm{k})}$
Theorem 4.3 All non- isomorphic one point union on k -copies of graph obtained on $\mathrm{G}=$ doubletail $\left(\mathrm{C}_{3}, 3 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.
Proof: From Fig 4.9 it follows that we can take one point union at three vertices ' $a$ ', ' $b$ ', or ' $c$ '. For the one point union at vertex $a$ or vertice $b$ we use Type A label and type $B$ label alternately in $G^{(k)}$. In $G^{(k)}$ where $k=2 x$ the type $A$ label and type $b$ label each is used for $x$ times. If $k=2 x+1(x=0,1,2, .$.$) then$ type A label is used for $\mathrm{x}+1$ times and type B label is used for x times. The label number distribution is given by $\mathrm{v}_{\mathrm{f}}(0,1)=(5+8 \mathrm{x}, 4+8 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(4+9 \mathrm{x}, 5+9 \mathrm{x})$ where $\mathrm{k}=2 \mathrm{x}+1, \mathrm{x}=0,1,2 \ldots$ If $\mathrm{k}=2 \mathrm{x} ; \mathrm{x}=1,2, .$. then we have, $\mathrm{v}_{\mathrm{f}}(0,1)=(9+8(\mathrm{x}-1), 8+8(\mathrm{x}-1)), \mathrm{e}_{\mathrm{f}}(0,1)=(9 \mathrm{k}, 9 \mathrm{k})$. Thus the graph is cordial.


Fig. 4.9 One point union may be taken at vertex a, or b or c .


Fig. $4.10 \mathrm{v}_{\mathrm{f}}(0,1)=(5,4)$ $\mathrm{e}_{\mathrm{f}}(0,1)=(4,5)$


Fig. $4.11 v_{f}(0,1)=(5,4)$ $\mathrm{e}_{\mathrm{f}}(0,1)=(4,5)$


Fig. $4.12 \mathrm{v}_{\mathrm{f}}(0,1)=(4,5)$
$\mathrm{e}_{\mathrm{f}}(0,1)=(5,4)$



Fig. $4.14 \mathrm{v}_{\mathrm{f}}(0,1)=(3,6)$ $\mathrm{e}_{\mathrm{f}}(0,1)=(4,5)$

The table shows scheme to obtain labeled copy $\mathrm{G}^{(\mathrm{K})}$ for given k with point common to all copies being c .

| k | Type of labels fused at vertex c | $\mathrm{V}_{\mathrm{f}}(0,1)$ | $\mathrm{e}_{\mathrm{f}}(0,1)$ | Label of common vertex | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | C | $(4,5)$ | $(5,4)$ | 1 | cordial |
| 2 | D | $(9,8)$ | (9,9) | 1 | cordial |
| 3 | D and C | $(13,12)$ | $(14,13)$ | 1 | cordial |
| 4 | C and D and E | ( 16,17 ) | $(18,18)$ | 1 | cordial |
| 4 x | Copy of $\mathrm{G}^{(4)}$ fuse at vertex ' $c$ ' for x times | (16x, 16x+1) | (18x, 18x) | 1 | cordial |
| $4 \mathrm{x}+1$ | Copy of $\mathrm{G}^{(4 x)}$ fuse at vertex ' $c$ ' with type C | $(16 x+4,16 x+5)$ | $(18 x+5,18 x+4)$ | 1 | cordial |
| $4 \mathrm{x}+2$ | Copy of $\mathrm{G}^{(4 \mathrm{x})}$ fuse at vertex ' $c$ ' with type D | $(16 x+9,16 x+8)$ | $(18 x+9,18 \mathrm{x}+9)$ | 1 | Cordial |
| $4 \mathrm{x}+3$ | Copy of $\mathrm{G}^{(4 \mathrm{x})}$ fuse at vertex ' $c$ ' with type D and typeC | $(16 x+13,16 x+12)$ | $(18 x+14,18 x+13)$ | 1 | cordial |

Table 4.1 : Elobarates the scheme to obtain labeled copy of $\mathrm{G}\left({ }^{\mathrm{k})}\right.$ with common vertex as two degree vertex c on double-tail $\left(\mathrm{C}_{3}, 3 \mathrm{p}_{2}\right)$
Thus the graphs are cordial.
Theorem 4.4 All non- isomorphic one point union on k-copies of graph obtained on $\mathrm{G}=$ doubletail $\left(\mathrm{C}_{3}, 4 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.
Proof: From Fig 4.15 it follows that we can take one point union at three vertices ' $a$ ', ' $b$ ', or ' $c$ '. For the one point union at vertex a or vertice $b$ we use Type A label and type $B$ label alternately in $G^{(k)}$. In $G^{(k)}$ where $k=2 x$ the type $A$ label and type $b$ label each is used for $x$ times. If $k=2 x+1(x=0,1,2, .$.$) then$ type A label is used for $\mathrm{x}+1$ times and type B label is used for x times. The label number distribution is given by $\mathrm{v}_{\mathrm{f}}(0,1)=(6+10 \mathrm{x}, 5+10 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(5+11 \mathrm{x}, 6+11 \mathrm{x})$ where $\mathrm{k}=2 \mathrm{x}+1, \mathrm{x}=0,1,2 \ldots$ If $\mathrm{k}=2 \mathrm{x} ; \mathrm{x}=1,2, .$. then we have, $\mathrm{v}_{\mathrm{f}}(0,1)=(11+10(\mathrm{x}-1), 10+10(\mathrm{x}-1)), \mathrm{e}_{\mathrm{f}}(0,1)=(11 \mathrm{k}, 11 \mathrm{k})$. Thus the graph is cordial.


Fig. $4.18 v_{f}(0,1)=(3,6)$ $\mathrm{e}_{\mathrm{f}}(0,1)=(4,5)$


| k | Type of labels fused at vertex c | $\mathrm{V}_{\mathrm{f}}(0,1)$ | $\mathrm{e}_{\mathrm{f}}(0,1)$ | Label of common vertex (c) | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | B | $(6,5)$ | $(6,5)$ | 1 | cordial |
| 2 | C and B | $(11,10)$ | $(11,11)$ | 1 | cordial |
| 3 | D | $(16,15)$ | $(17,16)$ | 0 | cordial |
| 4 | D and C | $(21,20)$ | $(22,22)$ | 0 | cordial |
| 4 x | Copy of $\mathrm{G}^{(4)}$ fuse at vertex ' c ' for x times | $(20 x+1,20 x)$ | $(22 x, 22 x)$ | 0 | cordial |
| $4 \mathrm{x}+1$ | Copy of $\mathrm{G}^{(4 \mathrm{x})}$ fuse at vertex ' $c$ ' with type C | $(20 x+6,20 x+5)$ | $(22 x+5,22 x+6)$ | 0 | cordial |
| $4 \mathrm{x}+2$ | Copy of $\mathrm{G}^{(4 x)}$ fuse at vertex ' $c$ ' with C and B | $\begin{gathered} (20 x+11,20 x+ \\ 10 \end{gathered}$ | $(\underset{)}{(22 x+11,22 x+11}$ | 0 | Cordial |
| $4 \mathrm{x}+3$ | Copy of $\mathrm{G}^{(4 x)}$ fuse at vertex ' $c$ ' with D | $\begin{gathered} (20 x+16,20 x+ \\ 15) \end{gathered}$ | $\begin{gathered} (22 x+17,22 x+16 \\ ) \end{gathered}$ | 0 | cordial |

Table 4.2 : Elobarates the scheme to obtain labeled copy of $\mathrm{G}\left({ }^{\mathrm{k})}\right.$ with common vertex as two degree vertex c on double-tail $\left(\mathrm{C}_{3}, 4 \mathrm{p}_{2}\right)$

Thus the graph is cordial.
Conclusions: In this paper we define some new families obtained from $\mathrm{C}_{3}$ and fusing to two adjacent vertices with pendent edges upto four. We show that

1) All non- isomorphic one point union on k-copies of graph obtained on $\mathrm{G}=$ double - tail $\left(\mathrm{C}_{3}, \mathrm{P}_{2}\right)$ also called $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.
2) All non- isomorphic one point union on k-copies of graph obtained on $\mathrm{G}=$ double- tail $\left(\mathrm{C}_{3}, 2 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.
3) All non- isomorphic one point union on k-copies of graph obtained on $\mathrm{G}=$ double- $\operatorname{tail}\left(\mathrm{C}_{3}, 3 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.
4) All non- isomorphic one point union on k-copies of graph obtained on $\mathrm{G}=$ double- $\operatorname{tail}\left(\mathrm{C}_{3}, 4 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.

## References:

[1] M. Andar, S. Boxwala, and N. Limye, On the cordiality of the t-ply Pt(u,v), Ars Combin., 77 (2005) 245-259.
[2] Bapat Mukund, Ph.D. thesis submitted to university of Mumbai. India 2004.
[3] Bapat Mukund V. Some Path Unions Invariance Under Cordial labeling, IJSAM feb. 2018
issue.
[4] I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.
[5] J. Clark and D. A. Holton, A first look at graph theory; world scientific.
[6] Harary, Graph Theory, Narosa publishing ,New Delhi
[7] Yilmaz, Cahit, E-cordial graphs, Ars combina, 46,251-256.
[8] J.Gallian, Dynamic survey of graph labeling, E.J.C 2017
[9] D. WEST, Introduction to Graph Theory, Pearson Education Asia.
${ }^{1}$ Mukund V. Bapat, Hindale, Tal: Devgad, Sindhudurg
Maharashtra, India 416630
mukundbapat@yahoo.com

